How It Works: CGH Arrays

Related Articles Genomic Alterations 2.0 Tips for CNV Detection Bac in time Aneuploid problems Old dog, new tricks Multiplex for control Needle in the haystack Comparative genomic hybridization (CHG) provides the densest coverage of probes for CNV detection, but the traditional technique using bacterial artificial chromosome arrays is time consuming and not always reproducible. Two companies, Agilent and NimbleGen, have released dedicated CGH platforms that instead use oligonucleotid

Written byAlla Katsnelson
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Comparative genomic hybridization (CHG) provides the densest coverage of probes for CNV detection, but the traditional technique using bacterial artificial chromosome arrays is time consuming and not always reproducible. Two companies, Agilent and NimbleGen, have released dedicated CGH platforms that instead use oligonucleotide probes; both provide flexibility in the way they design probes. Agilent's platform relies on laser-printing technology, while NimbleGen's system is built around a Digital Micromirror Device (DMD) made by Texas Instruments, similar to the technology in digital projectors. The DMD's micromirrors reflect a specific pattern of light into a synthesis chamber, essentially creating changeable "virtual masks" -- micromirrors set to "off" prevent oligo synthesis at a specific feature, and those flipped "on" allow synthesis to proceed.

The image below of the NimbleChip platform is a schematic, as NimbleGen declined to provide a precise representation, citing intellectual property concerns. The system contains three arrays on a single chip. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo