How Roundworms Sleep

When Caenorhabditis elegans surrenders to slumber, the majority of its neurons fall silent.

Written byDiana Kwon
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

An illustration of a sleeping worm (above) where most neurons are quiet (blue dots) and an awake worm (below) in which the nerve cells are active (yellow dots) ANNIKA NICHOLS AND MANUEL ZIMMERAcross the animal kingdom, nearly all creatures sleep or display sleep-like states. The roundworm, Caenorhabditis elegans, does not sleep in a typical day-night cycle like humans and many other animals. Instead, these worms catch most of their z’s while transitioning from one larval stage to another, during a period called lethargus. When these creatures fall asleep, most of their neurons become inactive spontaneously, suggesting that sleep—at least in worms—is a passive state of the brain, according to a study published today (June 22) in Science.

“The condition between sleep to wakefulness is probably one of the most drastic changes that our brains undergo,” says Manuel Zimmer, a neuroscientist at the Research Institute of Molecular Pathology at the Vienna Biocenter in Austria. “How a brain can switch between such drastically different states is not really understood.”

To investigate this process, Zimmer and colleagues examined the brains of C. elegans. These worms do indeed have primitive brains, yet their nervous system comprises only 302 neurons, making it much easier to tackle than, say, the human brain, with billions of neurons, or even the fly brain, which has around 100,000 nerve cells.

Using transgenic worms engineered with a fluorescent indicator that becomes active in response to high calcium levels in neurons (a proxy ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH
Beckman Logo

Beckman Coulter Life Sciences Introduces the Biomek i3 Benchtop Liquid Handler, a Small but Mighty Addition to its Portfolio of Automated Workstations