Hox: total knockout

Removing Hox gene functional redundancy reveals fundamental roles in skeletal formation

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The most primitive skeletal pattern consists of ribs projecting from vertebrae, from the head through to the tail. In mice, ribs are restricted to the thoracic region, and the axial skeleton consists of seven cervical, 13 thoracic, six lumbar, four sacral, and a variable number of caudal vertebrae. Hox genes control the patterning of the skeleton, but exactly how they achieve this has been confused by the redundant function of genes within the four chromosomal linkage groups, A–D, which arose during evolution by genomic duplication events. In the July 18 Science, Deneen M. Wellick and Mario R. Capecchi at the Howard Hughes Medical Institute clarify our understanding of skeletal development by knocking out each redundant copy in two of 13 paralogous sets of Hox genes. This reveals that these genes interact with one another in repressing the basic primitive skeletal pattern (Science, 301:363-367, July 18, 2003).

Wellick and Capecchi introduced ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Cathy Holding

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Discover a serum-free way to produce dendritic cells and macrophages for cell therapy applications.

Optimizing In Vitro Production of Monocyte-Derived Dendritic Cells and Macrophages

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with Lipid Nanoparticles

Thermo Fisher Logo