Human Exomes Galore

A new database includes complete sequences of protein-coding DNA from 60,706 individuals.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

FLICKR, DUNCAN HULLThe ability to sequence a person’s entire genome has led many researchers to hunt for the genetic causes of certain diseases. But without a larger set of genomes to compare mutations against, putting these variations into context is difficult. An international group of researchers has banked the full exomes of 60,706 individuals in a database called the Exome Aggregation Consortium (ExAC). The team’s analysis, posted last month (October 30) on the preprint server bioRxiv, was presented at the Genome Science 2015 conference in Birmingham, U.K. (September 7).

Led by Daniel MacArthur from the Broad Institute of MIT and Harvard, the research team collected exomes from labs around the world for its dataset. “The resulting catalogue of human genetic diversity has unprecedented resolution,” the authors wrote in their preprint. Many of the variants observed in the dataset occurred only once.

“This is one of the most useful resources ever created for medical testing for genetic disorders,” Heidi Rehm, a clinical lab director at Harvard Medical School, told Science News.

Among other things, the team found 3,230 genes that are highly conserved across exomes, indicating likely involvement in critical cellular functions. Of these, 2,557 are not associated with diseases. The authors hypothesized that these genes, if mutated, either lead to embryonic death—before a problem ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Karen Zusi

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio