Hydrogen Fueled Life’s Origins: Study

A thermodynamic analysis of more than 400 chemical reactions that likely took place in the ancestor of all life finds most would spontaneously occur at hydrothermal vents, thanks to the hydrogen these geological formations emit.

Written bySophie Fessl, PhD
| 4 min read
A hydrothermal vent spewing hot, mineral-rich fluid
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Today, life on Earth relies immensely on an external power source—namely, solar radiation—to provide the energy needed to forge bonds between atoms and assemble the complex organic compounds necessary for life. Since photosynthesis didn’t evolve until relatively late in the planet’s history, scientists have long debated what source of energy the first organisms utilized, throwing everything from meteorites to lightning strikes into the proverbial ring.

But the metabolism of the planet’s first organisms may not have required an external source of energy. Under the conditions present in a hydrothermal vent, a core set of metabolic reactions unfolds spontaneously in line with the laws of thermodynamics, according to calculations published December 13 in Frontiers of Microbiology.

“The present data uncover a hitherto unique thermodynamic link between core biochemistry as a whole and the conditions of a geochemical environment known to have existed on the early Earth,” writes biochemist John Allen, who ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Headshot of Sophie Fessl

    Sophie Fessl is a freelance science journalist. She has a PhD in developmental neurobiology from King’s College London and a degree in biology from the University of Oxford. After completing her PhD, she swapped her favorite neuroscience model, the fruit fly, for pen and paper.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
An image of a DNA sequencing spectrum with a radial blur filter applied.

A Comprehensive Guide to Next-Generation Sequencing

Integra Logo
Golden geometric pattern on a blue background, symbolizing the precision, consistency, and technique essential to effective pipetting.

Best Practices for Precise Pipetting

Integra Logo
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel