Hydrogen Fueled Life’s Origins: Study

A thermodynamic analysis of more than 400 chemical reactions that likely took place in the ancestor of all life finds most would spontaneously occur at hydrothermal vents, thanks to the hydrogen these geological formations emit.

Written bySophie Fessl, PhD
| 4 min read
A hydrothermal vent spewing hot, mineral-rich fluid
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Today, life on Earth relies immensely on an external power source—namely, solar radiation—to provide the energy needed to forge bonds between atoms and assemble the complex organic compounds necessary for life. Since photosynthesis didn’t evolve until relatively late in the planet’s history, scientists have long debated what source of energy the first organisms utilized, throwing everything from meteorites to lightning strikes into the proverbial ring.

But the metabolism of the planet’s first organisms may not have required an external source of energy. Under the conditions present in a hydrothermal vent, a core set of metabolic reactions unfolds spontaneously in line with the laws of thermodynamics, according to calculations published December 13 in Frontiers of Microbiology.

“The present data uncover a hitherto unique thermodynamic link between core biochemistry as a whole and the conditions of a geochemical environment known to have existed on the early Earth,” writes biochemist John Allen, who ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Headshot of Sophie Fessl

    Sophie Fessl is a freelance science journalist. She has a PhD in developmental neurobiology from King’s College London and a degree in biology from the University of Oxford. After completing her PhD, she swapped her favorite neuroscience model, the fruit fly, for pen and paper.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies