Immune Cells Deliver Cancer Drugs to the Brain

Neutrophils loaded with the chemotherapy drug paclitaxel traverse the blood-brain barrier and kill residual cancer cells after tumor-resection surgery in mice.

Written byDiana Kwon
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Cerebral glioblastomaWIKIMEDIA, KGHGlioblastomas, highly aggressive malignant brain tumors, have a high propensity for recurrence and are associated with low survival rates. Even when surgeons remove these tumors, deeply infiltrated cancer cells often remain and contribute to relapse. By harnessing neutrophils, a critical player in the innate immune response, scientists have devised a way to deliver drugs to kill these residual cells, according to a mouse study published today (June 19) in Nature Nanotechnology.

Neutrophils, the most common type of white blood cell, home in to areas of injury and inflammation to fight infections. Prior studies in both animals and humans have reported that neutrophils can cross the blood-brain barrier, and although these cells are not typically attracted to glioblastomas, they are recruited at sites of tumor removal in response to post-operative inflammation.

To take advantage of the characteristics of these innate immune cells, researchers at China Pharmaceutical University encased paclitaxel, a traditional chemotherapy drug, with lipids. These liposome capsules were loaded into neutrophils and injected in the blood of three mouse models of glioblastoma. When the treatment was applied following surgical removal of the main tumor mass, the neutrophil-carrying drugs were able to cross the blood-brain barrier, destroy ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies