Immune Genes Protect Cells from Ebola Virus and SARS-CoV-2

A pathway involved in the adaptive immune system, a relative newcomer in the world of pathogen defense, may have a more ancient role in protecting cells from invading viruses.

Written byRachael Moeller Gorman
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, 4X-IMAGE

The paper
A. Bruchez et al., “MHC class II transactivator CIITA induces cell resistance to Ebola virus and SARS-like coronaviruses,” Science, 370:241–47, 2020.

Earlier this year, immunologist Adam Lacy-Hulbert of the Benaroya Research Institute in Seattle and his former postdoc Anna Bruchez were writing up their discovery of a previously unknown immune pathway that defends cells against Ebola virus. Then SARS-CoV-2 hit the US. The two suspected that the pathway provided broad antiviral defense, so they decided to test it against the novel coronavirus.

In the Ebola experiments, Lacy-Hulbert, Bruchez, and their colleagues had been using a genetic screen called transposon-mediated gene activation to search for natural antiviral mechanisms within cultured human bone cancer cells. Transposons, mobile genetic elements found throughout the genome, can be added to cells to knock out genes they randomly insert into. The team had integrated a promoter sequence into the transposons so ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After earning a bachelor’s degree in biology and neuroscience from Williams College, Rachael spent two years studying the tiny C. elegans worm as a lab tech at Massachusetts General Hospital/Harvard University. She then returned to school to get a master’s degree in environmental studies from Brown University, and subsequently worked as an intern at Scientific AmericanDiscover magazine, and the Annals of Improbable Research, the originators of the yearly Ig Nobel prizes. She now freelances for both scientific and lay publications, and loves telling the stories behind the science. Find her at rachaelgorman.com or on Instagram @rachaelmoellergorman.

    View Full Profile

Published In

December 2020

Dream Engineers

Manipulating the sleeping brain to understand it

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research