Improving Crops with RNAi

RNA interference is proving to be a valuable tool for agriculture, allowing researchers to develop pathogen-resistant and more-nutritious crops.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

© ISTOCK.COM/TAWNINTAEWRNA interference (RNAi)—the process by which small interfering RNAs (siRNAs) bind to and cleave complementary mRNA sequences, inhibiting their translation into proteins—is not new to agriculture. In fact, as a naturally occurring biological process, RNAi was mediating plant metabolism, growth, and pathogen defense long before humans began cultivating crops for their own benefit. But in the last 15 years, RNAi’s role in agriculture has grown as researchers have developed greater understanding of the mechanisms underlying the phenomenon and employed it to improve pathogen resistance, nutrition, and yield of crop plants. RNAi-enhanced crops have been approved for cultivation by regulatory agencies in the United States, Europe, Canada, Australia, New Zealand, and Brazil, and some of these crops—for example, papaya—have already reached our plates.

RNAi is a particularly potent tool for fighting common crop pathogens. By simply integrating virus- or bacteria-derived DNA sequences into the plant genome, pathogen-targeting siRNAs can be produced, triggering the endogenous RNAi mechanisms to target and degrade homologous sequences produced by invading pathogens. Commercial cultivation of virus-resistant papaya and extensive field testing of virus-resistant plum (under high disease pressure) since 1996 have shown that the pathogen-derived RNAi technology can deliver very effective and durable resistance. More recently, this strategy has produced virus-resistant common beans, fungal-resistant bananas, nematode-resistant soybeans, and insect-resistant corn. To date, RNAi has proven more cost-effective and environmentally friendly than the use of pesticides to control pathogens, and RNAi-fortified crops have the potential to impact food security and economic development. Recent regulatory approval ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Narender Nehra

    This person does not yet have a bio.
  • Nigel Taylor

    This person does not yet have a bio.

Published In

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome