Improving Crops with RNAi

RNA interference is proving to be a valuable tool for agriculture, allowing researchers to develop pathogen-resistant and more-nutritious crops.

Written byNarender Nehra and Nigel Taylor
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

© ISTOCK.COM/TAWNINTAEWRNA interference (RNAi)—the process by which small interfering RNAs (siRNAs) bind to and cleave complementary mRNA sequences, inhibiting their translation into proteins—is not new to agriculture. In fact, as a naturally occurring biological process, RNAi was mediating plant metabolism, growth, and pathogen defense long before humans began cultivating crops for their own benefit. But in the last 15 years, RNAi’s role in agriculture has grown as researchers have developed greater understanding of the mechanisms underlying the phenomenon and employed it to improve pathogen resistance, nutrition, and yield of crop plants. RNAi-enhanced crops have been approved for cultivation by regulatory agencies in the United States, Europe, Canada, Australia, New Zealand, and Brazil, and some of these crops—for example, papaya—have already reached our plates.

RNAi is a particularly potent tool for fighting common crop pathogens. By simply integrating virus- or bacteria-derived DNA sequences into the plant genome, pathogen-targeting siRNAs can be produced, triggering the endogenous RNAi mechanisms to target and degrade homologous sequences produced by invading pathogens. Commercial cultivation of virus-resistant papaya and extensive field testing of virus-resistant plum (under high disease pressure) since 1996 have shown that the pathogen-derived RNAi technology can deliver very effective and durable resistance. More recently, this strategy has produced virus-resistant common beans, fungal-resistant bananas, nematode-resistant soybeans, and insect-resistant corn. To date, RNAi has proven more cost-effective and environmentally friendly than the use of pesticides to control pathogens, and RNAi-fortified crops have the potential to impact food security and economic development. Recent regulatory approval ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies