Improving Preclinical Discovery of CRISPR Engineered Immune Cell Therapies

There is an urgent need to characterize the potency and efficacy of CRISPR-Cas9-modified inducible pluripotent stem cell-derived natural killer cells for preclinical cancer immunotherapy research. IsoPlexis' single-cell proteomics system addresses this challenge by connecting each immune cell to cytokine secretion and thereby correlating them to in vivo outcome across a range of disease areas.

Written byIsoPlexis
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Natural killer (NK) cells, known for their ability to kill tumor cells, are promising agents for cell-based cancer immunotherapies. CRISPR-Cas9 gene editing can be used to effectively modify the genetic makeup of inducible pluripotent stem cell (iPSC)-derived NK cells towards this end, but there is an urgent need to characterize their potency and efficacy as a preclinical cancer immunotherapy. IsoPlexis' single-cell proteomics system addresses this challenge by connecting each immune cell to the many cytokines it secretes, revealing correlations to in vivo outcome across a range of disease areas.

The Polyfunctional Strength Index (PSI) delivers correlative potency data

The IsoPlexis system identifies which cells are polyfunctional (i.e., those powerful cells that secrete multiple cytokines) and quantitates the cytokine concentrations within each cell. PSI combines these two single-cell metrics to effectively identify highly potent immunotherapies.

PSI reveals cell potency of gene-edited, iPSC-derived NK cells

To study the role of cytokine-inducible SH2-containing ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH