Infographic: Bacterial Microcompartments Basics

These icosahedral structures are composed of proteins with unique geometric properties, which enable bacteria to employ them in a variety of situations.

Written byAmber Dance
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

ABOVE: © THOM GRAVES

Many different bacterial species contain small, protein-based compartments that expand cells’ metabolic repertoires by sequestering chemical reactions. Depending on their enzyme contents, the compartments can fix carbon, break down molecules for energy, or protect cells from stressful conditions.

Bacterial microcompartment shells are built out of thousands of protein subunits that fall into three basic structural motifs:

BMC: The principal shell protein comes in two main forms, BMC-H, which forms a hexamer, and BMC-T, which forms a trimer. These hexagon-shape components tile together to form the 20 sides of the icosahedron and have a central pore to allow substrates in and products out. The pores in the BMC-H tiles are small, allowingmolecules of just one or a few carbon atoms in and out of the microcompartment. BMC-T pores, on the other hand, are larger, presumably for movement of bigger molecules, and these can be opened or closed. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile

Published In

December 2018

Invisible Borders

An emerging appreciation for membraneless organelles and the liquid dynamics that shape them

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Golden geometric pattern on a blue background, symbolizing the precision, consistency, and technique essential to effective pipetting.

Best Practices for Precise Pipetting

Integra Logo
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel