Infographic: How AI Analyzes Cancer

The latest machine learning models can identify many visual and molecular features of a particular cancer. If the technology advances to the clinic, it could help diagnose patients and predict survival.

Written byAmber Dance
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

ABOVE: MODIFIED FROM
© ISTOCK.COM, Aleksei_Derin

Scientists have been using two main forms of clinical data to predict cancer outcomes: images (either photographs, as in the case of skin cancer, or pathology slides) and -omes of various sorts. Applying ever-more sophisticated machine learning approaches to these datasets can yield accurate diagnoses and prognoses, and even infer how tumors evolve (yellow arrows). Now, scientists are finding that images can predict -omics (blue arrows). Combining the two data sources gives researchers even better predictions of how long a cancer patient will live (thick purple arrows). The ultimate goal of these algorithms, currently under development in basic biology labs, is to help doctors select treatments and forecast survival.

Read the full story.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile

Published In

May 2019 The Scientist Issue
May 2019

AI Tackles Biology

How machine learning will revolutionize science and medicine.

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies