Infographic: What Are Membraneless Organelles?

The physical principles that dictate the formation of these subcellular compartments are simple, but they dictate the organelles’ complex functions.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © KIMBERLY BATTISTA

Alongside organelles such as mitochondria and Golgi apparatuses, membraneless structures help compartmentalize the cytoplasm, as well as the interior of the nucleus. In contrast to organelles with a lipid bilayer membrane, membraneless structures are formed through a process known as liquid-liquid phase separation. When it comes to how and why cells create and use membraneless organelles, however, there are still more questions than answers.

For liquid-liquid phase separation to occur in cells, the polymers that make up membraneless organelles—typically highly flexible proteins and nucleic acids—must exceed what is called their saturation concentration, or ”solubility limit,” in the cytoplasm or nucleoplasm. Below this level, the polymer chains dissolve into the surrounding cellular solution; if the saturation concentration is exceeded, the extra polymer chains condense into liquid-like droplets. The polymer chains inside and outside the droplets are therefore in equilibrium, meaning they continuously escape and rejoin the membraneless ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Michael Crabtree

    This person does not yet have a bio.
  • Tim Nott

    This person does not yet have a bio.

Published In

December 2018

Invisible Borders

An emerging appreciation for membraneless organelles and the liquid dynamics that shape them

Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad
Takara Bio

Takara Bio USA Holdings, Inc. announces the acquisition of Curio Bioscience, adding spatial biology to its broad portfolio of single-cell omics solutions

Sapio Sciences

Sapio Sciences Announces Enhanced Capabilities for Chemistry, Immunogenicity, GMP and Molecular Biology

Biotium Logo

Biotium Unveils the Most Sensitive Stains for DNA or RNA with New EMBER™ Ultra Agarose Gel Kits