Infographic: Human Endogenous Retroviruses and Disease

Human endogenous retroviruses that colonized vertebrate DNA millions of years ago have long been dismissed as junk DNA, but researchers now know that they may play important roles in cancer, neurodegeneration, and other ailments.

Written byKatarina Zimmer
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Over the course of evolution, several groups of ancient viruses colonized our ancestors’ genomes, leaving thousands of fragments of viral code in modern-day human DNA. The bulk of HERVs integrated during primate evolution. Subsequent mutations in these sequences have rendered older insertions nonfunctional, but some of the younger and more intact sequences from HERVs have been linked to disease.

Around 8 percent of our genetic code stems from HERVs, the bulk of which integrated during primate evolution.

Current research suggests that viral hitchhikers in human DNA may play roles in cancer, inflammation, and neurodegenerative disorders. The mechanisms that underpin these connections between human endogenous retroviruses (HERVs) and disease are just beginning to emerge. Transcription of viral RNA can signal the presence of foreign DNA in cells, triggering defensive immune reactions. Scientists have also proposed that synthesis of the HERV envelope protein—which once enclosed the viral capsid of its retroviral ancestors—exerts ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • katya katarina zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field of science and wanted to write about all of them. Following an internship with The Scientist in 2017, she’s been happily freelancing for a number of publications, covering everything from climate change to oncology. Katarina is a news correspondent for The Scientist and contributes occasional features to the magazine. Find her on Twitter @katarinazimmer and read her work on her website.

    View Full Profile

Published In

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform