Infographic: A Plant Cell’s Cuticle Helps Regulate Toxic Chemical Accumulation

Researchers found that thinning petunia cells’ cuticles caused them to slow production of volatile organic compounds.

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

ABOVE: © MELANIE LEE

Scented flowers owe their smells to volatile organic compounds (VOCs), but a too-high concentration of VOCs in the cytoplasm can damage cells. Normally, VOCs accumulate in an outer layer known as the cuticle, with a few in the cytoplasm (left cell). To examine the cuticle’s role in VOC emission, researchers thinned the cuticles of petunia cells, and found that initially, VOCs backed up within the cell membrane and cuticle, causing damage (middle cell). But hours later, the plants sensed the cell damage and reduced the production of VOCs, leading to lower concentrations in both the cell and the cuticle compared to plants with unaltered cuticles and avoiding further damage (right cell).

Read the full story.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley Yeager

    Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

Published In

February 2021

Restoring Reefs

New approaches could accelerate development of outplanted corals

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit