Infographic: Breaking into the Brain

The blood-brain barrier is a collection of specialized cells and proteins that control the movement of molecules from the blood to the central nervous system.

Written byAmanda B. Keener
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The blood vessel endothelial cells of the BBB are cemented together by protein structures called tight junctions (1), preventing diffusion of most molecules between cells. BBB endothelial cells display transporters (2), receptors (3), and channels (4) that facilitate selective transport of vital nutrients into the CNS. They also possess efflux pumps, such as P-glycoprotein, that expel most small, amphiphilic molecules that are soluble in the blood and in cell lipid membranes (5). Pericytes and astrocyte pseudopods serve as an additional physical barrier between the blood vessel and brain tissue, and support the expression of endothelial cell genes required to maintain the BBB.

© 2017, LISA CLARK

Designing drugs to reach the CNS requires some creativity on the part of researchers. The approaches vary from disrupting the BBB’s tight junctions ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH