Infographic: Can Archaea Teach Us About the Evolution of Eukaroyotes?

The discovery of copious new archaeal species is shedding light on the tree of life and revealing some unique cellular biology.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Thanks to a wealth of new genomic sequence data, the family tree of Archaea, which encompassed just two phyla 16 years ago, has exploded in recent years. It now includes more than a dozen phyla, organized into four informal “supergroups,” based mostly on sequence similarities. Scientists have yet to determine precisely how novel archaea should be classified. Also in dispute is how Eukarya fit into the picture—some scientists suggest they’re an offshoot of a branch known as Asgard archaea, while others suspect they diverged from Archaea earlier on. Researchers predict the tree will sprout many more branches in the years to come.

Bacteria typically possess one chromosome with one origin of replication. Eukaryotes have multiple, paired chromosomes with numerous origins on each. Archaea straddle the divide: while they typically have one main chromosome, it often replicates from multiple origins.

Some archaea also have the unique ability to adopt an alternate version of DNA replication initiation. Across all domains of life, DNA replication starts when initiation proteins bind the origin of replication; deleting the origins typically slows growth or halts cell division entirely. But in the archaeon Haloferax volcanii, deleting the origins causes faster growth. H. volcanii replicates its genome in a way similar to homologous recombination, in which two matching chromosomes swap strands to create a replication fork, though the details of this process are still being worked out (Nature, 503:544-47, 2013).

Archaea can possess megaplasmids—hundreds of kilobases in size—that contain crucial genes. Some species are haploid like bacteria but many exhibit varying degrees of polyploidy. Many archaea use histones, as eukaryotes do, to organize their genomes, but some rely on alternative Alba proteins.

Some archaea divide via a mechanism similar to that of bacteria, using the cytoskeleton-like protein FtsZ to form a ring at the eventual division site (left). Others use homologs of eukaryote proteins, such as ESCRTs, to help separate daughter cells (right). Still others lack both of those systems, so they presumably have a distinct, as-yet-unknown mechanism, possibly relying on a form of actin.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Amber Dance

    Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit