Infographic: Mapping Musicality

Huge areas of the brain respond to any sort of auditory stimulus, making it difficult for scientists to nail down regions that are important for music processing.

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

© CATHERINE DELPHIAFunctional magnetic resonance imaging (fMRI) studies have taken diverse approaches to pinpointing areas involved in musical perception, providing “musical” stimuli ranging from human singing to synthesized piano melodies and other computer-generated sounds, and yielding equally varied results. Despite these hurdles, research is beginning to offer some clues about the regions of the brain involved in musical perception.

Based on Cortex, 59:126-37, 2014

Music activates diverse areas of the brain, from the primary auditory cortex to the amygdala. But the degree to which certain areas are specifically geared to processing music, as opposed to other sounds, is unclear. By comparing activation patterns in the brain while people listened to nonmusical human vocalizations, such as speech or laughter, or to instrumental music, researchers found that certain regions responded more strongly to one type of auditory stimulus than the other. For example, parts of the superior temporal gyrus (STG), the superior temporal sulcus (STS), and the inferior frontal gyrus (IFG) showed stronger responses to vocalizations ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH