Infographic: Noncoding RNA in the Brain

Neurologically important noncoding RNAs come in many shapes and sizes.

Written byChristie Wilcox, PhD
| 14 min read

Register for free to listen to this article
Listen with Speechify
0:00
14:00
Share

Bursts in microRNA (miRNA) diversity often line up with sudden increases in morphological complexity, especially in the context of the nervous system. In a 2022 bioRxiv preprint, researchers uncovered an miRNA repertoire expansion (orange) in the ancestor of coleoid cephalopods—the group that includes squids and octopuses, generally thought to be more intelligent than any other invertebrates—on par with ones seen in the ancestors of vertebrates (blue) and placental mammals (green).

TK
the scientist staff; Icons: © ISTOCK.COM, MaskaRad, GreenTana, Nadiinko, vectorforjoy, Hachio Nora, NatuskaDPI

The Multitudes of Noncoding RNA

The term “noncoding RNA” is a catch-all for sequences in the genome that are transcribed but typically not translated. These molecules, which account for the majority of the transcribed sequences in the genome, are now thought to play key roles in brain evolution and function. Noncoding RNAs can be classified based on their size, structure, location, or function, with dozens of different kinds described to date. Here are four types of noncoding RNA frequently studied in brain tissues.

Illustration long noncoding RNAs

Long noncoding RNAs

Long noncoding RNAs (lncRNAs) are generally described as any noncoding RNAs greater than 200 nucleotides in length. Because of their variable size and composition, they can have complex shapes and perform a variety of cellular activities, though most lncRNAs await functional investigation.

Example: The human and chimpanzee versions of a lncRNA called HAR1 differ by 18 nucleotides, which impacts the molecule’s secondary structure. The human version is predicted to be more stable, but exactly how that translates into differences in brain form or function isn’t yet clear.

Illustration microRNAs

MicroRNAs

MicroRNAs (miRNAs) are small noncoding RNAs of just ~20–26 nucleotides (teal) that are cleaved from larger precursors. Their most well-described function is the regulation of gene expression via binding to messenger RNAs, where they generally inhibit translation and, therefore, reduce the amount of protein produced from a given gene.

Example: Overexpression of miRNA-124 leads to Alzheimer’s-like pathologies in mice, and elevated levels of the miRNA are found in the brains of people who died from the disease.

Illustration Circular RNAs

Circular RNAs

As the name suggests, circular RNAs (circRNAs) are noncoding RNAs with joined ends, creating a more stable, circular molecule. Many questions remain as to the functions of circRNAs, but some are known to bind miRNAs, likely acting as sponges to modulate the miRNAs’ translation-suppressing effects.

Example: The circRNA CDR1-AS fine tunes neuronal development in humans, binding microRNAs (teal) highly expressed in secretory neurons that regulate developmental gene expression.

Illustration Transfer RNAs

Transfer RNAs

Transfer RNAs’ primary job is to shuttle amino acids to growing peptide chains during translation. In the brain specifically, there’s emerging evidence that modifications to tRNAs play important roles in neuronal health and disease. Furthermore, tRNA fragments—small chunks from tRNA breakdown—seem to have their own functions, including in neurodegeneration.

Example: When researchers exposed Drosophila neuron cultures to synthetic tRFGln-CTG (teal)—a fragment of the tRNA for glutamine—the cells swelled and died, suggesting the fragment could play a role in neuronal necrosis.

the scientist staff

Read the full story.

Related Topics

Meet the Author

Published In

Fall 2022 Cover
Fall 2022

Rethinking Neuroscience

From the cerebellum to neurodegenerative disease, researchers are giving old science a fresh look

Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series