Infographic: Using Gene Drive to Control Malaria

For years, researchers have looked to genetically modify mosquitoes to prevent the spread of malaria. Now they have a promising strategy.

Written byTony Nolan and Andrea Crisanti
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

While introducing genetic changes has long been supported by advancing technologies, getting those modifications to spread through wild mosquito populations has remained a challenge. Now, the newly understood concept of gene drive, in which genetic elements can spread more rapidly than those following traditional Mendelian inheritance principles, may finally solve the problem.

Without gene drive, an allele will be passed from generation to generation via traditional Mendelian genetics. That is, when a heterozygous individual carrying only one copy of the allele mates with an individual lacking it altogether, only half of their offspring will inherit the genetic segment. But in a gene drive that spreads the allele to the homologous chromosome in the germline, all progeny will receive a copy. With gene drive, it’s even possible for a deleterious allele to spread through the population, despite imposing a severe fitness cost.

There are three general approaches to implementing gene drives ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies