Integrating Multiple -Omics in Individual Cells

New techniques combine DNA, RNA, and protein information from single cells.

| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

ABOVE: © ISTOCK.COM, THEASIS

Adefining shift in molecular biology over the past decade has been the application of whole genome and whole transcriptome sequencing methods to single cells. With advances in cell isolation and next generation sequencing, researchers no longer need to average out the signal from multiple cells in a population, but can instead study the DNA, RNA, proteins, and chromatin cell by cell.

Single-cell genomics, epigenomics, transcriptomics, and proteomics studies have revealed just how much variation there is in gene and protein expression even between genetically identical cells in the same tissue. But most such studies examine only a single layer of information from each cell, which may give a skewed picture, says Pier Federico Gherardini, a biologist at the Parker Institute for Cancer Immunotherapy in San Francisco. “You cannot just measure RNA and assume that things will look the same with proteins.”

Researchers have started to combine ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Sandeep Ravindran

    This person does not yet have a bio.

Published In

October 2018

Bright Lights, Big Problems

Scientists are exploring the ecological damage caused by artificially lit night skies

Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development