Integrating Multiple -Omics in Individual Cells

New techniques combine DNA, RNA, and protein information from single cells.

Written bySandeep Ravindran
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

ABOVE: © ISTOCK.COM, THEASIS

Adefining shift in molecular biology over the past decade has been the application of whole genome and whole transcriptome sequencing methods to single cells. With advances in cell isolation and next generation sequencing, researchers no longer need to average out the signal from multiple cells in a population, but can instead study the DNA, RNA, proteins, and chromatin cell by cell.

Single-cell genomics, epigenomics, transcriptomics, and proteomics studies have revealed just how much variation there is in gene and protein expression even between genetically identical cells in the same tissue. But most such studies examine only a single layer of information from each cell, which may give a skewed picture, says Pier Federico Gherardini, a biologist at the Parker Institute for Cancer Immunotherapy in San Francisco. “You cannot just measure RNA and assume that things will look the same with proteins.”

Researchers have started to combine ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

October 2018

Bright Lights, Big Problems

Scientists are exploring the ecological damage caused by artificially lit night skies

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH