Invertebrate Density Influences Plant Flowering Times, Abundance

An experimental study explores how plant communities may be affected by future declines in invertebrate populations.

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: Experimental ecosystems at the German Centre for Integrative Biodiversity Research allowed researchers to study how invertebrate density influences plant lifecycles and species composition.
JOSEPHINE ULRICH

The paper
J. Ulrich et al., “Invertebrate decline leads to shifts in plant species abundance and phenology,” Front Plant Sci, 11:542125, 2020.

When Josephine Ulrich and colleagues got the chance to work with the iDiv Ecotron, a system of experimental containers in Germany that lets researchers create and manipulate miniature ecosystems, they decided to investigate the effect of declining invertebrate populations on plant communities. Many studies have explored how projected changes in abiotic factors—rising temperatures, for example—influence plants, says Ulrich, a PhD student at the German Centre for Integrative Biodiversity Research (iDiv) and Friedrich Schiller University, but to look at biotic factors such as invertebrate loss is a new approach.

The team used 24 of the Ecotron units to create tiny grasslands, each with the same ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

February 2021

Restoring Reefs

New approaches could accelerate development of outplanted corals

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH