Invertebrate Density Influences Plant Flowering Times, Abundance

An experimental study explores how plant communities may be affected by future declines in invertebrate populations.

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: Experimental ecosystems at the German Centre for Integrative Biodiversity Research allowed researchers to study how invertebrate density influences plant lifecycles and species composition.
JOSEPHINE ULRICH

The paper
J. Ulrich et al., “Invertebrate decline leads to shifts in plant species abundance and phenology,” Front Plant Sci, 11:542125, 2020.

When Josephine Ulrich and colleagues got the chance to work with the iDiv Ecotron, a system of experimental containers in Germany that lets researchers create and manipulate miniature ecosystems, they decided to investigate the effect of declining invertebrate populations on plant communities. Many studies have explored how projected changes in abiotic factors—rising temperatures, for example—influence plants, says Ulrich, a PhD student at the German Centre for Integrative Biodiversity Research (iDiv) and Friedrich Schiller University, but to look at biotic factors such as invertebrate loss is a new approach.

The team used 24 of the Ecotron units to create tiny grasslands, each with the same ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

February 2021

Restoring Reefs

New approaches could accelerate development of outplanted corals

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies