African clawed frog, by Ben RschrIn the final weeks of 2012, it seemed that Santa had brought an early Christmas present to a team of Russian scientists—a treasure trove of antimicrobial peptides (AMPs) in the skin of a frog. By screening the Russian brown frog—an edible animal once dipped in milk to prevent it from souring—Antony Lebedev from Moscow State University identified 76 chemicals that prevented the growth of common bacteria like Salmonella and Staphylococcus. The press release for the study described these substances as “potential medical treasures.”
Rarely a month goes by without a new paper describing new chemicals from frog skins. They are announced by the handfuls, or sometimes hundreds at a time. Since the 1990s, they have been touted as promising leads for the next generation of antibiotics.
But despite decades of work, and thousands of candidate compounds, no amphibian peptides have been turned into a marketable drug. “Frog skin is frankly baloney,” said Kim Lewis from Northeastern University in Boston. “The scientific community has gone through tens of thousands of AMPs and not a single one of them made it through clinical studies.”
There is a clear need for new antibiotics. Bacteria are evading even the most potent front-line drugs, and resistance continues to rise. Meanwhile, the production of ...