Is Frog Skin a Red Herring?

Despite decades of work, compounds in frog skins have failed to yield new antibiotics. Why?

Written byEd Yong
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

African clawed frog, by Ben RschrIn the final weeks of 2012, it seemed that Santa had brought an early Christmas present to a team of Russian scientists—a treasure trove of antimicrobial peptides (AMPs) in the skin of a frog. By screening the Russian brown frog—an edible animal once dipped in milk to prevent it from souring—Antony Lebedev from Moscow State University identified 76 chemicals that prevented the growth of common bacteria like Salmonella and Staphylococcus. The press release for the study described these substances as “potential medical treasures.”

Rarely a month goes by without a new paper describing new chemicals from frog skins. They are announced by the handfuls, or sometimes hundreds at a time. Since the 1990s, they have been touted as promising leads for the next generation of antibiotics.

But despite decades of work, and thousands of candidate compounds, no amphibian peptides have been turned into a marketable drug. “Frog skin is frankly baloney,” said Kim Lewis from Northeastern University in Boston. “The scientific community has gone through tens of thousands of AMPs and not a single one of them made it through clinical studies.”

There is a clear need for new antibiotics. Bacteria are evading even the most potent front-line drugs, and resistance continues to rise. Meanwhile, the production of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies