It Takes Less Than 30 Days to Compost a Human Body

In a small trial of deceased volunteers, a Seattle-based company called Recompose demonstrates that its method for “natural organic reduction” of a human body completely breaks down soft tissue.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © ISTOCK.COM, DMYTRO DIEDOV

In less than a month, six dead people became dirt, according to results presented yesterday (February 16) at the American Association for the Advancement of Science meeting in Seattle. The trial, run by Seattle-based company Recompose, the first-ever human composting company, set out to test the effectiveness of its technique and ensure that the resulting soil product met Environmental Protection Agency safety standards for heavy metals and other contaminants.

Last year, Washington became the first state to legalize this practice of human composting. Katrina Spade, Recompose’s founder and chief executive officer, tells the BBC that compared with cremation or traditional burial, the process of composting a body—or “natural organic reduction,” as Recompose calls it—can avoid the atmospheric release of nearly one-and-a-half tons of carbon and therefore is a motivating factor for people concerned about climate change. Compared with traditional burial, composting avoids the risk that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours