Jet-printing microfluidic devices on demand

Jet-printing microfluidic devices on demand – a new paper from engineering and biomedical scientists at the University of Oxford and spin-out company iotaSciences Ltd – describes a game-changing method to generate cell-friendly microfluidic devices on demand.


Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

This innovative protocol offers significant benefits to biology and biomedicine, enabling simple, contactless fabrication of microfluidic circuits in minutes – almost as quickly as the circuit pattern can be drawn on paper – using truly cell-friendly materials; standard Petri dishes and culture media.

The pioneering jet-printing method stems from the recognition that gravity becomes irrelevant at the microscale. In the everyday world, objects are invariably made with solids; building complex structures out of liquids, which would collapse into puddles and drain away, is not feasible. Using microjets to fabricate microfluidic devices takes advantage of the interfacial forces that dominate in the microworld. In this paper, the method was used to successfully clone cells by limiting dilution in a way that beats the Poisson limit, to subculture adherent cells, and to feed arrays of cells continuously for a week in sub-microliter chambers. Liquid flows were driven through conduits with and without ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

The Scientist Placeholder Image

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo
Chemidoc

ChemiDoc Go Imaging System ​

Bio-Rad
The Scientist Placeholder Image

Evotec Announces Key Progress in Neuroscience Collaboration with Bristol Myers Squibb