Kyle Smith Shines a Light on Addiction

The Dartmouth College professor uses optogenetics to probe the neurological routes of habitual behavior.

Written byShawna Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

© ROB STRONGWhen Kyle Smith was a kid, he didn’t like science. “I didn’t do very well” in the subject, he says. As an undergraduate at Indiana University, he initially saw himself going into film or television production, but he says the jump to psychology with a neuroscience bent wasn’t really such a big one. With film, “basically you start out with nothing, come up with an idea, figure out how to get it done, be creative, make it interesting to people. . . . push boundaries, [which] is exactly the same kind of thing I’ve found in science,” Smith says.

Smith was drawn to psychology partly by the problem of drug addiction. “Watching people go through that, it just hijacks the person in a sad but really fascinating way,” he says. As an undergraduate he studied at the University of Oxford, focusing on “the neuroscience side of psychology,” which further hooked him, so Smith became a graduate student in the lab of Kent Berridge at the University of Michigan.

Berridge’s group had previously found that ablating a region of the rodent brain called the ventral pallidum (VP) wiped out the animals’ reward response so completely that they stopped eating. To learn more about specific areas involved in the reward response, Smith used tiny syringes to inject neurotransmitter-mimicking chemicals into preimplanted tubes in the brains of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor’s degree in biochemistry from Colorado College and a graduate certificate in science communication from the University of California, Santa Cruz. Previously, she worked as a freelance editor and writer, and in the communications offices of several academic research institutions. As news director, Shawna assigned and edited news, opinion, and in-depth feature articles for the website on all aspects of the life sciences. She is based in central Washington State, and is a member of the Northwest Science Writers Association and the National Association of Science Writers.

    View Full Profile

Published In

November 2017

The Mosaic Brain

Functional implications of a complex neural ecosystem

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies