Learning Bioinformatics

In today’s data-heavy research environment, wet-lab scientists can benefit from new computational skills.

Written byEsther Landhuis
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

© ISTOCK.COM/NICOLASAdelaide Rhodes had no idea a tiny crustacean would fuel such a big career shift. About a decade ago, as a postdoc at the University of Washington, she was researching copepods—microscopic organisms that convert unsaturated fatty acids into the omega-3 fats that make salmon a healthy meal. They’re “what fish eat to get fat,” Rhodes says. During an aquaculture boom, she began hunting for genes involved in the fat-converting process. Trouble was, very few researchers studied copepod genetics. Back in 2005, Rhodes’s searches for “copepod and lipids” on the DNA Data Bank of Japan, European Nucleotide Archive, and GenBank yielded no results. When she searched “crustacean,” she got a list of some 50 genes, but none were related to lipid metabolism.

Undeterred, Rhodes broadened her search to include insect genes, then designed primer sets and ran countless PCR assays to check if those same genes were found in copepods. She also went around at meetings asking other researchers if they had copepod data or sequences to share. Rhodes eventually identified two potential copepod desaturases—enzymes that introduce double bonds into fatty acid chains. However, she couldn’t confirm whether those genes are specific to copepods, because there weren’t enough publicly available crustacean genomes for comparison.

These days, she wouldn’t have that problem. When researchers identify a new genomic sequence, they can use modern computing and bioinformatics tools to check for its presence in related species’ genomes with just a few keystrokes. And as technical advances yield unmanageable amounts ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

July 2016

Marine Maladies

The pathogenic effects of warmer, more acidic oceans

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel