Learning Bioinformatics

In today’s data-heavy research environment, wet-lab scientists can benefit from new computational skills.

Written byEsther Landhuis
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

© ISTOCK.COM/NICOLASAdelaide Rhodes had no idea a tiny crustacean would fuel such a big career shift. About a decade ago, as a postdoc at the University of Washington, she was researching copepods—microscopic organisms that convert unsaturated fatty acids into the omega-3 fats that make salmon a healthy meal. They’re “what fish eat to get fat,” Rhodes says. During an aquaculture boom, she began hunting for genes involved in the fat-converting process. Trouble was, very few researchers studied copepod genetics. Back in 2005, Rhodes’s searches for “copepod and lipids” on the DNA Data Bank of Japan, European Nucleotide Archive, and GenBank yielded no results. When she searched “crustacean,” she got a list of some 50 genes, but none were related to lipid metabolism.

Undeterred, Rhodes broadened her search to include insect genes, then designed primer sets and ran countless PCR assays to check if those same genes were found in copepods. She also went around at meetings asking other researchers if they had copepod data or sequences to share. Rhodes eventually identified two potential copepod desaturases—enzymes that introduce double bonds into fatty acid chains. However, she couldn’t confirm whether those genes are specific to copepods, because there weren’t enough publicly available crustacean genomes for comparison.

These days, she wouldn’t have that problem. When researchers identify a new genomic sequence, they can use modern computing and bioinformatics tools to check for its presence in related species’ genomes with just a few keystrokes. And as technical advances yield unmanageable amounts ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

July 2016

Marine Maladies

The pathogenic effects of warmer, more acidic oceans

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control