Life's a bleach

Courtesy of Andrew Baker, Wildlife Conservation SocietyRutgers University scientists have identified a physiological mechanism behind the bleaching that has affected coral reefs worldwide over the past three decades. Bleaching follows a rise in sea temperature, and it involves the ejection by coral polyps of symbiotic, photosynthetic algae from their tissues. Led by Paul Falkowski, professor of biological oceanography, the study finds that the melting of the fatty acid-based thylakoid membrane o

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Courtesy of Andrew Baker, Wildlife Conservation Society

Rutgers University scientists have identified a physiological mechanism behind the bleaching that has affected coral reefs worldwide over the past three decades. Bleaching follows a rise in sea temperature, and it involves the ejection by coral polyps of symbiotic, photosynthetic algae from their tissues. Led by Paul Falkowski, professor of biological oceanography, the study finds that the melting of the fatty acid-based thylakoid membrane of the algal chloroplasts triggers this event.

"As you raise the temperature, the membrane starts to fall apart," says Falkowski. "They spew out reactive oxygen species right into the animal cells, [which] view this as an attack and expel the algae." Andrew Baker, a marine biologist with the Wildlife Conservation Society, says that superoxide radical production and damage to photosystem II have long been associated with coral bleaching. This paper, he says, "succeeds in unifying all that into a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Stuart Blackman

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo