Limber LIMS

Using laboratory information management systems (LIMS) to automate and streamline laboratory tasks: three case studies

Written byNicholette Zeliadt
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

© RYCCIO/ISTOCKPHOTO.COMWith today’s high-throughput technologies and state-of-the-art tools, laboratories around the world are generating mountains of data at unprecedented rates. The traditional approaches to data management—notes jotted in lab notebooks, multiple spreadsheet files tucked away in computer folders, and images of gels and computer printouts stashed in 3-ring binders—no longer suffice. As a result, many researchers are turning to computerized laboratory information management systems (LIMS)—database applications that can help collect, organize, and track information about the samples being analyzed and the data being generated in the lab.

The first LIMS came on the scene more than 30 years ago as custom-made applications designed to increase productivity and to reduce the errors associated with routine laboratory functions. Today, a plethora of commercially licensed and open-source options are available, ranging from application-specific tools to multipurpose solutions. “A LIMS today is defined by what it can achieve,” says Tom Dolan, Director of Sales for RURO, Inc., which specializes in LIMS and other software for laboratory management.

Many LIMS can be configured to communicate with laboratory equipment, including analytical instruments and liquid-handling robots. This not only allows data to flow directly into the LIMS as it is generated, but also enables the system to direct the workflow with specifically tailored instructions. Features like these can improve ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH