Longevity Clues Tucked in Great White Shark Genome

Certain adaptations identified in the fish’s DNA linked to wound healing, cancer protection, and a long life.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © ISTOCK.COM, LINDSAY_IMAGERY

The great white shark genome—like the animal itself—is giant, with 41 pairs of chromosomes compared to humans’ 23 pairs, researchers reported yesterday (January 18) in PNAS. The team sequenced the entire genome of the great white shark (Carcharodon carcharias), which revealed genetic changes that appear to have helped the species persist for roughly 500 million years longer than almost any vertebrate on Earth.

“Decoding the white shark genome is providing science with a new set of keys to unlock lingering mysteries about these feared and misunderstood predators,” study coauthor Salvador Jorgensen, a senior research scientist at the Monterey Bay Aquarium, says in a statement. The data reveal genetic changes that play a role in DNA repair, damage response, and damage tolerance, and those changes could explain how the sharks grow to be so big yet not have higher incidences of cancer compared with humans.

Theoretically, sharks ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley Yeager

    Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome