A sparkling violetear hummingbird, native of the Andean highlands.BRIAN ZWEIBEL Many more genetic changes can result in the same phenotype than previously suspected, according to a study of birds spanning 56 divergent species. Analyzing the structure and function of their hemoglobin proteins, Jay Storz of the University of Nebraska, Christopher Witt of the University of New Mexico, and their colleagues uncovered a wide breadth of mutations that all resulted in higher hemoglobin affinities for oxygen among birds living at high altitudes. The results were published today (October 20) in Science.
“This study is a beautiful look at the molecular basis of convergent evolution,” Joel McGlothlin, who studies evolution at Virginia Tech and was not involved in the work, wrote in an email to The Scientist. “Amazingly enough, there appear to be a huge number of different molecular routes to greater oxygen affinity, and birds seem to have explored many of them.”
“Other researchers have looked at examples of convergent evolution, but [these authors] have looked across a really wide taxonomic diversity in a single paper, which is really unique and unusual,” Jamie Bridgham of the Institute of Ecology and Evolution at the University of Oregon, who also did not participate in the study but who penned an accompanying commentary, told The Scientist.
Storz, Witt, and ...