Mechanical Force on the Skull May Aid Bone Regeneration

By mechanically inducing the expansion of cranial sutures in young adult mice, researchers stimulated stem cell proliferation that is key to healing bone injuries.

Written byAlejandra Manjarrez, PhD
| 3 min read
Side and front view of a male human skull
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Treatments available to repair damage to the skull as a result of trauma, surgery, or congenital anomalies are limited and sometimes involve risks. A study recently published in PNAS (1) offers an alternative approach inspired by how babies regenerate bone tissue. The researchers expanded on previous studies (2,3) showing that open sutures—the fibrous connective tissue holding bones together—in the skulls of newborn mice and humans are reservoirs of skeletal stem cells. The temporary mechanically-induced expansion of closed sutures in young adult mice resulted in the proliferation of skeletal stem cells and facilitated bone regeneration following an injury.

See “Apples Lay the Foundation for Regenerating Bone

Compared to what we know about other joints and limbs, “we know a lot less on the craniofacial system in terms of mechanobiology,” said University College London biomedical engineer Mehran Moazen, who did not participate in this study but has previously collaborated with one of the authors. Moazen noted that a major contribution of this study is that it advances our knowledge about the impact of external forces on the structure of cranial sutures and the potential healing properties of such impact.

The team, led by Giuseppe Intini, a bone biologist at the University of Pittsburgh, first compared the cell composition of the calvarial suture—which joins the bilateral bones in the roof of the skull—in mice of different ages and found that the number of skeletal stem cells is significantly reduced in older mice compared to younger mice. Increased numbers of stem cells correlate with open sutures in newborns, leading Intini and his colleagues to wonder whether expanding the sutures in adults would increase the number of stem cells enough to harness their regenerative potential.

The team achieved this goal in 2-month-old mice, which Intini considered the equivalent of young adults in humans. When the researchers mechanically induced calvarial suture expansion, the number of skeletal stem cells increased significantly. Moreover, mice that received an injury to the skull near the suture simultaneous to the mechanical expansion exhibited near complete bone regeneration after 60 days, something that was not achieved in control mice without the expansion device. This mechanically-induced regeneration did not occur in 10-month-old mice, probably due to the limited supply of preexisting skeletal stem cells in the sutures, which is insufficient to achieve successful proliferation.

Finally, the team showed that suture stem cell proliferation and the resulting healing effects depend on Wnt signaling, a pathway that regulates key aspects of animal development.

Intini added that even if researchers could use existing devices to slowly pull craniofacial bones apart to study bone regeneration in humans, it might nonetheless be practical to investigate alternatives to this mechanical stimulation. This study is about a principle that activating a stem cell niche in the suture— “in this particular case, [using] mechanical expansion,” said Intini — results in a regenerative effect. “But we do have to find a more practical way to activate the stem cells.” Understanding the molecular mechanisms regulating skeletal stem cell proliferation and exploring ways to induce it by different means is key to achieve that goal, he concluded.

  1. Aldawood, Z.A. et al. (2023) “Expansion of the sagittal suture induces proliferation of skeletal stem cells and sustains endogenous calvarial bone regeneration,” Proceedings of the National Academy of Sciences, 120(16). Available at: https://doi.org/10.1073/pnas.2120826120.
  2. Zhao, H. et al. (2015) “The suture provides a niche for mesenchymal stem cells of Craniofacial Bones,” Nature Cell Biology, 17(4), pp. 386–396. Available at: https://doi.org/10.1038/ncb3139.
  3. Maruyama, T. et al. (2016) “Stem cells of the suture mesenchyme in craniofacial bone development, repair and Regeneration,” Nature Communications, 7(1). Available at: https://doi.org/10.1038/ncomms10526.

Related Topics

Meet the Author

  • alejandra manjarrez

    Alejandra Manjarrez is a freelance science journalist who contributes to The Scientist. She has a PhD in systems biology from ETH Zurich and a master’s in molecular biology from Utrecht University. After years studying bacteria in a lab, she now spends most of her days reading, writing, and hunting science stories, either while traveling or visiting random libraries around the world. Her work has also appeared in Hakai, The Atlantic, and Lab Times.

    View Full Profile
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH