Mechanism Behind Extreme Longevity in Some Plants

Certain plant stem cells rarely divide, a study shows, possibly fending off an accumulation of potentially harmful genetic mutations in some species.

Written byKerry Grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, CARL DAVIES, CSIROCompared to humans’ century-long life span, some plants—evergreens in particular—have the capacity to live for an exceptionally long time, even millennia. In a study published in Current Biology today (May 5), scientists from the University of Bern in Switzerland present evidence for a potential mechanism that could help explain some plants’ everlasting longevity: minimal stem cell divisions to avoid “mutational meltdown.”

The team zeroed in the formation of axillary meristems—stem cells that give rise to branches—in Arabidopsis thaliana and tomato, finding few cell divisions between the apical meristem located at the very top of a plant and the axillary meristems. With such little proliferation comes less opportunity to accumulate potentially deleterious genetic mutations in somatic cells that could kill the organism, the authors reasoned.

“Meristem aging is not a problem for perennial plants, in other words,” said Sergi Munné Bosch, a plant physiologist at the University of Barcelona who was not part of the study. “The meristems are the growing units. If they don’t senesce, then the plant will keep the capacity to grow and reproduce forever, at least potentially.” Instead, he added, structural defects or ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery