Mechanism Behind Extreme Longevity in Some Plants

Certain plant stem cells rarely divide, a study shows, possibly fending off an accumulation of potentially harmful genetic mutations in some species.

Written byKerry Grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, CARL DAVIES, CSIROCompared to humans’ century-long life span, some plants—evergreens in particular—have the capacity to live for an exceptionally long time, even millennia. In a study published in Current Biology today (May 5), scientists from the University of Bern in Switzerland present evidence for a potential mechanism that could help explain some plants’ everlasting longevity: minimal stem cell divisions to avoid “mutational meltdown.”

The team zeroed in the formation of axillary meristems—stem cells that give rise to branches—in Arabidopsis thaliana and tomato, finding few cell divisions between the apical meristem located at the very top of a plant and the axillary meristems. With such little proliferation comes less opportunity to accumulate potentially deleterious genetic mutations in somatic cells that could kill the organism, the authors reasoned.

“Meristem aging is not a problem for perennial plants, in other words,” said Sergi Munné Bosch, a plant physiologist at the University of Barcelona who was not part of the study. “The meristems are the growing units. If they don’t senesce, then the plant will keep the capacity to grow and reproduce forever, at least potentially.” Instead, he added, structural defects or ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH