Memories Erased from Snail Neurons

Scientists block particular enzymes to remove the cellular signatures associated with specific memory types.

Written byDiana Kwon
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Two Aplysia sensory neurons (dark grey) with synaptic contacts on a motor neuron (red)SCHACHER LAB/COLUMBIA UNIVERSITY MEDICAL CENTER

By blocking specific enzymes, researchers were able to selectively remove memories stored in the neurons of Aplysia, a sea slug. These findings, published last week (June 22) in Current Biology, demonstrate that distinct memories stored in connections to a single nerve cell can be manipulated separately.

“We were able to reverse long-term changes in synaptic strength at synapses known to contribute to different forms of memories,” study coauthor Samuel Schacher, a neuroscientist at Columbia University, told Motherboard.

By stimulating multiple Aplysia sensory neurons that make connections with to the same motor neuron, Schacher and colleagues induced associative memory, which involves learning the relationship between two previously unrelated items (a new acquaintance’s name, for example), and non-associative memory, where recollections are unrelated to a specific event. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies