Microbe from Yogurt Impedes Drug-Resistant Bacteria

Lactobacillus parafarraginis metabolites hindered the growth of multiple, distantly related bacterial pathogens.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

An electron micrograph of Lactobacillus WIKIMEDIA, MOGANA DAS MURTEY AND PATCHAMUTHU RAMASAMYLactobacillus parafarraginis KU495926, extracted from yogurt, hindered the growth of 14 multidrug-resistant and so-called extended spectrum beta-lactamase (ESBL) bacteria obtained from infected patients at a Washington D.C. hospital, according to Howard University biologists at the annual American Society for Microbiology meeting held in New Orleans this week (June 1-5).

ESBL bacteria make beta-lactamase enzymes, which promote resistance to certain broad-spectrum antibiotics. The researchers found that L. parafarraginis, a gram-positive microbe, produced a substance, likely a bacteriocin—a type of antimicrobial protein—that inhibited the gram-negative ESBL and multidrug-resistant pathogens. According to lead author Rachelle Allen-McFarlane, a graduate student in Broderick Eribo’s lab at Howard, this may be one of few known examples of gram-positive bacteria-derived bacteriocins inhibiting the growth of gram-negative bacteria.

Typically, bacteriocins from one particular strain are only capable of inhibiting closely related strains, Allen-McFarlane tells The Scientist. Most of the time, “gram-positive kills gram-positive,” she explains.

Though it’s rare, it is possible. “My area of interest is to identify bacteriocins from lactic acid bacteria that are capable of inhibiting multi-drug resistant and ESBL ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Aggie Mika

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio