MicroRNAs linked to cancer

Trio of Nature papers describes elevated miRNAs in various human tumors and models

Written byGraciela Flores
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

MicroRNAs—the minute noncoding negative regulators of gene expression—could be intimately involved in the development of cancer, according to a trio of papers published in the June 9 Nature.

Todd Golub at the Dana-Farber Cancer Institute and the Broad Institute of the Massachusetts Institute of Technology and Harvard and coauthors report that they could accurately classify human cancers with an novel assay that they say could become a powerful diagnostic tool. In a second paper, the groups of Gregory Hannon at Cold Spring Harbor and Scott Hammond at the University of North Carolina describe elevated levels of miRNAs in human lymphoma samples and cell lines. Experimental overexpression of those miRNAs caused cancer in a mouse model.

The highly conserved miRNAs and their link to cancer has been in people's minds for many years, Paul Meltzer at the National Human Genome Research Institute told The Scientist. "Previous works have reported changes in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH