Mind-Controlled Gene Expression

A light-inducible optogenetic implant in mice, powered by EEG, responds to a human participant’s mental state.

Written byJyoti Madhusoodanan
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIPEDIA, RAMAThoughts have power—sort of. A new device uses the electric energy of a person’s brainwaves to trigger a light-emitting diode, which then remotely activates light-inducible genes in a small implant placed in mice.

The system, described in Nature Communications today (November 11), may eventually provide new gene and cell-based treatment opportunities that respond to an individual’s specific mental states. Although the contraption sounds unusual, it relies on combining two well-known technologies: optogenetics, which uses light-sensitive proteins to control gene expression, and an EEG-based brain-computer interface (BCI), which harnesses the brain’s electrical potentials to create a physical output.

“This work is pretty awesome,” said synthetic biologist Timothy Lu of MIT who was not involved with the study. “This is the first time people have gone this far with combining these technologies.”

Martin Fussenegger of ETH Zurich, who led the new research, has been working on ways to remotely control gene expression for nearly a decade. His recent work has ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies