Minding the Pulse of Memory Consolidation

Studying sleep spindles could help neuroscientists better understand certain cognitive impairments.

Written byRichard Kemeny
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Thalamus (red)WIKIMEDIA, LIFE SCIENCE DATABASESSleep is essential for memory. Mounting evidence continues to support the notion that the nocturnal brain replays, stabilizes, reorganizes, and strengthens memories while the body is at rest. Recently, one particular facet of this process has piqued the interest of a growing group of neuroscientists: sleep spindles. For years these brief bursts of brain activity have been largely ignored. Now it seems that examining these neuronal pulses could help researchers better understand—perhaps even treat—cognitive impairments.

Sleep spindles are a defining characteristic of stage 2 non-rapid eye movement (NREM) sleep. These electrical bursts between 10-16 Hz last only around a second, and are known to occur in the human brain thousands of times per night. Generated by a thin net of neurons enveloping the thalamus, spindles appear across several regions of the brain, and are thought to perform various functions, including maintaining sleep in the face of disturbances in the environment.

It appears they are also a fundamental part of the process by which the human brain consolidates memories during sleep.

A memory formed during the day is stored temporarily in the hippocampus, before being spontaneously replayed during the night. Information about the memory is distributed out and integrated into the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control