WIKIMEDIA, BIOMED CENTRAL; SÁNCHEZ-SORIANO, TEAR, WHITINGTON, PROKOP The functions of miniature neurotransmission, in which presynaptic neurons spontaneously release synaptic vesicles that induce postsynaptic neuronal activity, have eluded neuroscientists since the process was first discovered in the early 1950s. Some have simply considered miniature neurotransmissions—or “minis,” which have been found at every synapse studied—to be byproducts of neurotransmission evoked by action potentials. But in recent years, others have presented evidence to suggest that minis are functional, influencing the production of proteins at synapses, among other things.
Working with live Drosophila, Columbia University Medical Center’s Brian McCabe and his colleagues now demonstrate another role for minis: regulating the structural maturation of glutamatergic synapses. Their work was published in Neuron today (May 7).
“The paper is very exciting . . . [and] extends our previous understanding of miniature neurotransmission in important ways,” said Michael Sutton, an associate professor at the University of Michigan Molecular and Behavioral Neuroscience Institute, who was not involved in the work. “[It] adds to several reports over the last 10 years that have established a functional role for miniature events at synapses.”
Previous reports demonstrated that spontaneous neurotransmission differs from evoked transmission. In February, for example, researchers at the University of California, Berkeley, showed that different Drosophila larval neuromuscular ...






















