Mitotic Hijacker

How a parasite sneakily ensures its own replication

Written byRichard P. Grant
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ANDRZEJ KRAUZE

When a cell divides, its duplicated chromosomes have to be shared equally between the two daughter cells. Cells manage this feat by lining up replicated chromosomes along their equators during mitosis, and then pulling sister chromatids apart to the right destinations. But Theileria, an intracellular parasitic protozoan, also needs to divide when its host cell undergoes mitosis. Dirk Dobbelaere and colleagues at the University of Bern have now shown how Theileria hijacks the host cell’s mitotic machinery to ensure its continued survival (PLoS Biol, 8:e1000499, 2010).

Some species within the genus Theileria cause variants of theileriosis, an economically important tick-borne disease that affects cattle in the tropics and subtropics. The parasite infects white blood cells, but unlike the malaria parasite Plasmodium, to which it is ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH