Mosaic Mutations May Not Be Rare

Somatic mosaicism may be responsible for a larger proportion of genomic variability within humans than previously thought.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, DATABASE CENTER FOR LIFE SCIENCES Most novel mutations in an individual are thought to originate in the germline. Other mutations, somatic mosaic mutations—which are only present in a subset of a person’s cells—can either be passed down from a parent or originate during early development. Such mosaic mutations were thought to be fairly rare, but according to a study published today (June 5) in The American Journal of Human Genetics, they may contribute to as much as 6.5 percent of an individual’s genomic variation. If confirmed, the results could affect how researchers estimate a person’s risk of passing disease-linked alleles on to their children.

The findings “highlight that mosaicism may be more common than we had appreciated so far,” geneticist Anne Goriely of the University of Oxford wrote in an e-mail to The Scientist. “The main value of the present study is an attempt to quantify this process,” added Goriely, who was not involved in the work.

Mosaicism can result when a de novo mutation arises after an embryo is formed. Using newer, more sensitive sequencing technologies, researchers have recently begun to identify mosaic mutations. For the present study, Alexander Hoischen of Radboud University Medical Center in Nijmegen, the Netherlands, and his colleagues used four different sequencing methods to estimate the frequency rate of this phenomenon in children.

Expanding on a previous sequencing effort to identify disease-causing de novo ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies