Mosaic Mutations May Not Be Rare

Somatic mosaicism may be responsible for a larger proportion of genomic variability within humans than previously thought.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, DATABASE CENTER FOR LIFE SCIENCES Most novel mutations in an individual are thought to originate in the germline. Other mutations, somatic mosaic mutations—which are only present in a subset of a person’s cells—can either be passed down from a parent or originate during early development. Such mosaic mutations were thought to be fairly rare, but according to a study published today (June 5) in The American Journal of Human Genetics, they may contribute to as much as 6.5 percent of an individual’s genomic variation. If confirmed, the results could affect how researchers estimate a person’s risk of passing disease-linked alleles on to their children.

The findings “highlight that mosaicism may be more common than we had appreciated so far,” geneticist Anne Goriely of the University of Oxford wrote in an e-mail to The Scientist. “The main value of the present study is an attempt to quantify this process,” added Goriely, who was not involved in the work.

Mosaicism can result when a de novo mutation arises after an embryo is formed. Using newer, more sensitive sequencing technologies, researchers have recently begun to identify mosaic mutations. For the present study, Alexander Hoischen of Radboud University Medical Center in Nijmegen, the Netherlands, and his colleagues used four different sequencing methods to estimate the frequency rate of this phenomenon in children.

Expanding on a previous sequencing effort to identify disease-causing de novo ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research