Narrow Straits

Transfecting molecules into cells is as easy as one, two, squeeze.

Written byRuth Williams
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

GEORGE RETSECKA wide array of transfection techniques exist for inserting particular molecules into particular cell types, but what’s needed is a more generalized approach for getting molecules of all shapes and sizes into any type of cell, says Klavs Jensen, professor of chemical engineering at the Massachusetts Institute of Technology. So he devised a method that involves sending cells through narrow microfluidic channels that cause the cells to deform, creating tiny holes in their membranes through which molecules enter by diffusion.

Unlike transfection techniques that require chemical treatments or viral vectors, techniques that rely on physical disruption of cell membranes—such as electroporation, cell shearing, and Jensen’s cell-squeezing approach—have the advantage of being suitable for clinical use. But cell squeezing has an additional benefit, says Mark Prausnitz of the Georgia Institute of Technology, who was not involved in the work.

“The real strength of this approach is that by using a microchannel you have such exquisite control,” Prausnitz says. “You know exactly how big the channel is, you know exactly the velocity of the fluid through it, and you can control [both] perfectly.” Electroporation and cell shearing are coarser by comparison, and thus getting the balance between efficient transfection and minimal cell death is tricky.

Although the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA