Narrow Straits

Transfecting molecules into cells is as easy as one, two, squeeze.

ruth williams
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

GEORGE RETSECKA wide array of transfection techniques exist for inserting particular molecules into particular cell types, but what’s needed is a more generalized approach for getting molecules of all shapes and sizes into any type of cell, says Klavs Jensen, professor of chemical engineering at the Massachusetts Institute of Technology. So he devised a method that involves sending cells through narrow microfluidic channels that cause the cells to deform, creating tiny holes in their membranes through which molecules enter by diffusion.

Unlike transfection techniques that require chemical treatments or viral vectors, techniques that rely on physical disruption of cell membranes—such as electroporation, cell shearing, and Jensen’s cell-squeezing approach—have the advantage of being suitable for clinical use. But cell squeezing has an additional benefit, says Mark Prausnitz of the Georgia Institute of Technology, who was not involved in the work.

“The real strength of this approach is that by using a microchannel you have such exquisite control,” Prausnitz says. “You know exactly how big the channel is, you know exactly the velocity of the fluid through it, and you can control [both] perfectly.” Electroporation and cell shearing are coarser by comparison, and thus getting the balance between efficient transfection and minimal cell death is tricky.

Although the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.

Published In

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer