Neural Basis of Risk Aversion

Researchers identify and manipulate a signal in the brains of rats that controls risky behavior.

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, PEMELETHumans and many other animals are generally risk-averse, meaning they will usually choose stable, certain rewards over risky ones, even if the average payoff from both options is the same. Now, researchers at Stanford University have identified—and manipulated—a specific signal in the brains of rats that determines risky behavior just before the animals make a decision. The findings were published yesterday (March 23) in Nature.

“It turns out you can explain a large part of whether rats were risky or not by this particular signal at this particular time,” study coauthor Karl Deisseroth of Stanford told The New York Times. “We saw it happen, and then we were able to provide that signal, and then see that we could drive the behavior causally.”

Previous research had suggested that an area of the forebrain called the nucleus accumbens plays an important role in decision-making. Part of the reward system of the brain, this region contains neurons with receptors for dopamine, a chemical producing feelings of pleasure.

To investigate the role of these neurons in risky decision-making, the researchers implanted an optical fiber into the nucleus accumbens of 17 rats. They then ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH