New Route to Hearing Loss Mapped

Deficiency in a protein called pejvakin makes inner ear cells more vulnerable to sound, unable to brace themselves against oxidative stress stimulated by noise.

Written byKerry Grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, HENRY GRAYMutations in the gene PJVK and resulting deficiencies in the gene’s protein product, pejvakin, impair inner ear cells’ ability to respond to oxidative stress brought about by noise, making them vulnerable to damage, according to a study published today (November 4) in Cell. The results present a new mechanism for the most common environmental cause of hearing loss—injury from noise.

The findings also offer opportunities to explore therapies for people affected by these mutations, study coauthor Christine Petit of the Institut Pasteur and the Collège de France told The Scientist. “I think what should be done immediately is propose the use of antioxidants,” she said, and look into developing a gene therapy to correct for the loss of pejvakin.

About a decade ago, Petit’s team identified the PJVK gene as being associated with deafness in certain families. It was another in a growing heap of genes associated with hearing loss, but this one was peculiar in that the clinical manifestations of its mutations were all over the map. Some individuals were profoundly deaf, while others had only a slight impairment. Some family members showed progressive ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH