New Technique Maps RNAs in Cells Without a Microscope

DNA microscopy pinpoints the locations of transcripts by laying a grid of tags over the molecules and labeling each connection.

Written byKerry Grens
| 1 min read
dna microscopy visualization RNA cDNA mRNA transcripts cell biology

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

A newly developed method called DNA microscopy can accurately pinpoint the location of mRNA molecules within a cell and produce a visual map of the transcripts—all without actually using a microscope.

The technique, published in Cell today (June 20), works by first converting selected RNAs in a cell culture to cDNAs, then labeling each molecule with a unique stretch of nucleotides. Those labels then amplify themselves, and when they expand to the point of contacting another cDNA’s labels, the connection itself gets a unique nucleotide tag. The closer any two cDNAs are, the more connection tags they’ll generate.

As Science describes it, “To count the labels, the researchers grind up the cells and analyze the DNA they contain. A computer algorithm can then infer the original positions of the DNA molecules to generate an image.”

“The first time I saw a DNA microscopy image, it blew me away,” coauthor Aviv ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies