Next Generation: A Molecular Camera

Knocking electrons out of atomic orbit with a laser allows researchers to take femtosecond-scale “movies” of molecules in motion.

Written byHannah Waters
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A nitrogen molecule shifts during the time between laser pulses, one femtosecond. The atoms' movements are shown as a measure of increasing angular momentum, on a scale from dark blue to pink, with pink showing the region of greatest momentum. IMAGE COURTESY OF COSMIN BLAGA

THE DEVICE: Molecules are in constant motion as electrons swarm around inside atoms, slightly flexing the atomic bonds and shifting the molecule’s shape. Using standard tools found in physical chemistry labs, physicist Cosmin Blaga from Ohio State University and his colleagues have executed a technique to take rapid snapshots of molecules in motion, published last week (March 7) in Nature.

By shooting a laser through a tiny hole into a vacuum chamber, Blaga created an infrared laser field. The laser’s intensity knocks an electron out of atomic orbit just for a few femtoseconds, or 10-15 seconds. In that short time before the electron is pulled back into orbit, the bonds holding the molecule’s atoms stretch. And, even if they shift by only a mere angstrom ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Golden geometric pattern on a blue background, symbolizing the precision, consistency, and technique essential to effective pipetting.

Best Practices for Precise Pipetting

Integra Logo
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel