Next Generation: Nanotube Scaffolds Reconnect Spinal Neurons

A 3-D carbon nanotube mesh enables rat spinal tissue sections to reconnect in culture.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

3D carbon nanotube meshJUMMI LAISHRAM The technique: Sections of spinal tissue placed 1 to 2 millimeters apart in a culture dish can reconnect their neurons with the help of an intervening carbon nanotube matrix, according to a study published today (July 15) in Science Advances. The 3-D matrix is also well tolerated when inserted into rat brains, the authors reported.

“The important thing about the paper is that, for the first time, it shows that a three-dimensional scaffold of the carbon nanotubes can really improve the connection between two networks in the spinal cord . . . in comparison with 2-D nanotubes or other 3-D networks,” said neuroscientist Jürg Streit of the University of Bern, Switzerland, who was not involved in the study.

The background: Immediately after a spinal cord injury, “there will be a scar that will physically block any kind of reconnection of the [original] fibers,” explained neurophysiologist Fabio Benfenati of the Italian Institute of Technology in Genova who also did not participate in the study. But researchers believe they might be able to circumvent such lesions. The idea is to induce the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel