Next Generation: Nanotube Scaffolds Reconnect Spinal Neurons

A 3-D carbon nanotube mesh enables rat spinal tissue sections to reconnect in culture.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

3D carbon nanotube meshJUMMI LAISHRAM The technique: Sections of spinal tissue placed 1 to 2 millimeters apart in a culture dish can reconnect their neurons with the help of an intervening carbon nanotube matrix, according to a study published today (July 15) in Science Advances. The 3-D matrix is also well tolerated when inserted into rat brains, the authors reported.

“The important thing about the paper is that, for the first time, it shows that a three-dimensional scaffold of the carbon nanotubes can really improve the connection between two networks in the spinal cord . . . in comparison with 2-D nanotubes or other 3-D networks,” said neuroscientist Jürg Streit of the University of Bern, Switzerland, who was not involved in the study.

The background: Immediately after a spinal cord injury, “there will be a scar that will physically block any kind of reconnection of the [original] fibers,” explained neurophysiologist Fabio Benfenati of the Italian Institute of Technology in Genova who also did not participate in the study. But researchers believe they might be able to circumvent such lesions. The idea is to induce the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH