Next Generation: Nanotube Scaffolds Reconnect Spinal Neurons

A 3-D carbon nanotube mesh enables rat spinal tissue sections to reconnect in culture.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

3D carbon nanotube meshJUMMI LAISHRAM The technique: Sections of spinal tissue placed 1 to 2 millimeters apart in a culture dish can reconnect their neurons with the help of an intervening carbon nanotube matrix, according to a study published today (July 15) in Science Advances. The 3-D matrix is also well tolerated when inserted into rat brains, the authors reported.

“The important thing about the paper is that, for the first time, it shows that a three-dimensional scaffold of the carbon nanotubes can really improve the connection between two networks in the spinal cord . . . in comparison with 2-D nanotubes or other 3-D networks,” said neuroscientist Jürg Streit of the University of Bern, Switzerland, who was not involved in the study.

The background: Immediately after a spinal cord injury, “there will be a scar that will physically block any kind of reconnection of the [original] fibers,” explained neurophysiologist Fabio Benfenati of the Italian Institute of Technology in Genova who also did not participate in the study. But researchers believe they might be able to circumvent such lesions. The idea is to induce the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome