Non-coding Repeats Cause Peptide Clumps

Protein aggregates in the brains of some people with dementia or motor neuron disease have a surprising origin.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Dipeptide repeat inclusion in patient brainKohji Mori and Dieter EdbauerA repetitive DNA sequence that was not believed to encode proteins is, in fact, the source of insoluble peptide chains that aggregate in the brain cells of patients displaying certain types of neurodegeneration, according to a study published today (February 7) in Science. These aggregates occur in a wide range of neurodegenerative disorders, so determining their identity is an important first step towards understanding how they might contribute to various pathologies.

“It’s a very exciting and important paper,” said Bruce Miller, a professor of neurology at the University of California, San Francisco, who was not involved in the study. “We’ve all been waiting, in the field, for someone to make this breakthrough, so I’m just thrilled.”

FTLD-ALS spectrum disorders are a range of related neurodegenerative disorders from frontotemporal lobar degeneration (FTLD) right through to amyotrophic lateral sclerosis (ALS). Most cases are of unknown origin, but an expanded repeat region in a non-coding part of a gene called C9orf72 “is the most prevalent cause we know of for both FTLD and ALS,” Miller said. Almost all patients with FTLD-ALS have characteristic protein aggregates, or inclusions, in their brain cells, but patients with the C9orf72 mutation have an ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research