Obesity Alters Sperm Epigenome

Moderately obese men display different epigenetic marks on their sperm than lean men, and bariatric surgery in massively obese men correlated with changes in sperm methylation.

Written byKaren Zusi
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

FLICKR, ZAPPYS TECHNOLOGY SOLUTIONSA team led by researchers from the University of Copenhagen discovered differences in the sperm epigenomes of lean and obese men, and in the sperm of obese men before and after bariatric surgery, according to a study published today (December 3) in Cell Metabolism. The results support the idea that fathers’ environments can be encoded in their sperm with potential downstream effects on embryos.

“There’s an emerging body of evidence that both mothers’ and fathers’ metabolic status can have major effects on germ cells, and these can have important implications for the health of the offspring,” said Mary-Elizabeth Patti, an endocrinologist and diabetes researcher at the Joslin Diabetes Center and assistant professor at Harvard Medical School. “This [study] is clearly providing one other piece of evidence to support the notion that there are differences in germ cells, in humans, as a function of paternal obesity.”

The Copenhagen research team recruited two dozen Danish men between the ages of 24 and 40 and classified them as lean (BMI 20–25) or obese (BMI > 29.7). Each volunteer provided a single ejaculate sample; the researchers scanned the sperm’s genomic DNA for methylation ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies