Ocean Acidification Harming Shellfish

Researchers determine why larval oysters and mussels are sensitive to reduced pH.

Written byBob Grant
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Mediterranean mussels at the Penn Cove Shellfish Farm in Washington's Puget Sound.IMAGE COURTESY OF PENN COVE SHELLFISH FARMClimate change is bad for commercial oyster and mussel growers. But until recently, researchers weren’t sure exactly how rising CO2 levels and the resultant ocean acidification—reduced pH—harmed the farmed bivalves. This week (December 15), researchers proposed an answer: it’s all about saturation state. In a paper published in Nature Climate Change, scientists from Oregon State University and state agencies reported that the larvae of Pacific oysters and Mediterranean mussels have a hard time forming their calcium carbonate shells as the surrounding seawater’s saturation state falls. Saturation state is a measure of how corrosive the seawater is to the shells that the larvae make as they grow, and as CO2 increases in the atmosphere, saturation state drops. A lower saturation state means more corrosive water.

“Biological oceanographers have speculated that early life stages of marine organisms might be particularly sensitive to ocean acidification, but the underlying mechanisms remain unknown for most species,” David Garrison, program director in the US National Science Foundation’s Division of Ocean Sciences, which funded the research through an ocean acidification competition, said in a statement. “This research is an important step in being able to predict, and perhaps mitigate, the effects of ocean acidification on coastal resources.”

The researchers exposed shellfish larvae to chemically manipulated seawater in the lab and tracked the effects of falling saturation state on their growth. They found that if water was too acidic, the free-swimming larvae had to expend too much energy on shell growth, which diverted energy from feeding and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer. Before joining the team, he worked as a reporter at Audubon and earned a master’s degree in science journalism from New York University. In his previous life, he pursued a career in science, getting a bachelor’s degree in wildlife biology from Montana State University and a master’s degree in marine biology from the College of Charleston in South Carolina. Bob edited Reading Frames and other sections of the magazine.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo