Opinion: Biomarkers of Longevity Not Ready for the Clinic

The science isn’t there yet, nor are the known interventions that ought to be combined with delivering such predictions.

| 4 min read
longevity lifespan prediction estimate elderly telomere methylation biomarker centenarian

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: © ISTOCK.COM, AZGEK

Doctors, scientists, insurers, biotech companies. and patients themselves have long sought to be able to accurately predict (and extend) an individual’s longevity. And given the right situations, such estimates could have health care benefits.

Over the past several years, scientists have identified four genetic and molecular biomarkers that potentially predict human and animal longevity. The first is the rate at which an individual’s telomeres shorten in length. There is increasing evidence from both human and animal studies that the slower the rate of telomere shortening, the longer that individual is likely to live. The second is the rate of gene methylation, indicating an increased level of methylation was correlated with shortened longevity. The third is the polygenic risk. A recently reported genetic analysis can identify “10 percent of people with the most protective genes, who will live an average of five years longer than the least ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • John Loike

    John D. Loike

    John Loike serves as the interim director of bioethics at New York Medical College and as a professor of biology at Touro University. His biomedical research focuses on how human white blood cells combat infections and cancer.
  • Ruth L. Fischbach

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours